Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 7(11): e541, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38028646

RESUMO

Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.

2.
Nucleic Acids Res ; 50(W1): W670-W676, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35544234

RESUMO

RSAT (Regulatory Sequence Analysis Tools) enables the detection and the analysis of cis-regulatory elements in genomic sequences. This software suite performs (i) de novo motif discovery (including from genome-wide datasets like ChIP-seq/ATAC-seq) (ii) genomic sequences scanning with known motifs, (iii) motif analysis (quality assessment, comparisons and clustering), (iv) analysis of regulatory variations and (v) comparative genomics. RSAT comprises 50 tools. Six public Web servers (including a teaching server) are offered to meet the needs of different biological communities. RSAT philosophy and originality are: (i) a multi-modal access depending on the user needs, through web forms, command-line for local installation and programmatic web services, (ii) a support for virtually any genome (animals, bacteria, plants, totalizing over 10 000 genomes directly accessible). Since the 2018 NAR Web Software Issue, we have developed a large REST API, extended the support for additional genomes and external motif collections, enhanced some tools and Web forms, and developed a novel tool that builds or refine gene regulatory networks using motif scanning (network-interactions). The RSAT website provides extensive documentation, tutorials and published protocols. RSAT code is under open-source license and now hosted in GitHub. RSAT is available at http://www.rsat.eu/.


Assuntos
Genômica , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Genômica/métodos , Software , Análise de Sequência de DNA/métodos , Redes Reguladoras de Genes
3.
Plant Physiol ; 185(3): 1242-1258, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33744946

RESUMO

The identification of functional elements encoded in plant genomes is necessary to understand gene regulation. Although much attention has been paid to model species like Arabidopsis (Arabidopsis thaliana), little is known about regulatory motifs in other plants. Here, we describe a bottom-up approach for de novo motif discovery using peach (Prunus persica) as an example. These predictions require pre-computed gene clusters grouped by their expression similarity. After optimizing the boundaries of proximal promoter regions, two motif discovery algorithms from RSAT::Plants (http://plants.rsat.eu) were tested (oligo and dyad analysis). Overall, 18 out of 45 co-expressed modules were enriched in motifs typical of well-known transcription factor (TF) families (bHLH, bZip, BZR, CAMTA, DOF, E2FE, AP2-ERF, Myb-like, NAC, TCP, and WRKY) and a few uncharacterized motifs. Our results indicate that small modules and promoter window of [-500 bp, +200 bp] relative to the transcription start site (TSS) maximize the number of motifs found and reduce low-complexity signals in peach. The distribution of discovered regulatory sites was unbalanced, as they accumulated around the TSS. This approach was benchmarked by testing two different expression-based clustering algorithms (network-based and hierarchical) and, as control, genes grouped for harboring ChIPseq peaks of the same Arabidopsis TF. The method was also verified on maize (Zea mays), a species with a large genome. In summary, this article presents a glimpse of the peach regulatory components at genome scale and provides a general protocol that can be applied to other species. A Docker software container is released to facilitate the reproduction of these analyses.


Assuntos
Regiões Promotoras Genéticas/genética , Prunus persica/genética , Algoritmos , Arabidopsis/genética , Biologia Computacional , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Família Multigênica/genética , Família Multigênica/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Plant Sci ; 7: 1715, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933070

RESUMO

Prunus persica L. Batsch, or peach, is one of the most important crops and it is widely established in irrigated arid and semi-arid regions. However, due to variations in the climate and the increased aridity, drought has become a major constraint, causing crop losses worldwide. The use of drought-tolerant rootstocks in modern fruit production appears to be a useful method of alleviating water deficit problems. However, the transcriptomic variation and the major molecular mechanisms that underlie the adaptation of drought-tolerant rootstocks to water shortage remain unclear. Hence, in this study, high-throughput sequencing (RNA-seq) was performed to assess the transcriptomic changes and the key genes involved in the response to drought in root tissues (GF677 rootstock) and leaf tissues (graft, var. Catherina) subjected to 16 days of drought stress. In total, 12 RNA libraries were constructed and sequenced. This generated a total of 315 M raw reads from both tissues, which allowed the assembly of 22,079 and 17,854 genes associated with the root and leaf tissues, respectively. Subsets of 500 differentially expressed genes (DEGs) in roots and 236 in leaves were identified and functionally annotated with 56 gene ontology (GO) terms and 99 metabolic pathways, which were mostly associated with aminobenzoate degradation and phenylpropanoid biosynthesis. The GO analysis highlighted the biological functions that were exclusive to the root tissue, such as "locomotion," "hormone metabolic process," and "detection of stimulus," indicating the stress-buffering role of the GF677 rootstock. Furthermore, the complex regulatory network involved in the drought response was revealed, involving proteins that are associated with signaling transduction, transcription and hormone regulation, redox homeostasis, and frontline barriers. We identified two poorly characterized genes in P. persica: growth-regulating factor 5 (GRF5), which may be involved in cellular expansion, and AtHB12, which may be involved in root elongation. The reliability of the RNA-seq experiment was validated by analyzing the expression patterns of 34 DEGs potentially involved in drought tolerance using quantitative reverse transcription polymerase chain reaction. The transcriptomic resources generated in this study provide a broad characterization of the acclimation of P. persica to drought, shedding light on the major molecular responses to the most important environmental stressor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...